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The formation of breakdown pattern on an insulating surface under the
influence of a transverse magnetic field is theoretically investigated. We have
generalized the Dielectric Breakdown Model (DBM) and random walker model
for the case of external magnetic field. It is shown that fractal dimensionality of
the discharge saturates with magnetic fields. It is conjectured that nonlinear
current interaction is responsible for the experimentally observed ‘‘spider-legs’’
like streamer patterns.
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Fractal properties are common to the dielectric breakdown phenomena (1)

which range from an atmospheric lightning(2–4) to electric treeing in polymers(5)

and are of significant scientific and technical importance. (6, 7) Although the
actual physical processes could be quite different in these phenomena, the
global properties of the resulting discharge patterns are very similar. Fila-
mentary gas discharges on insulating surface exhibit remarkable similarities
to breakdown phenomena in long gaps, (8) e.g., to atmospheric lightning, and
thus offer the possibility to perform well-defined model experiments in
laboratory.



The surface discharge in compressed SF6 gas has been studied in detail
by Niemeyer and Pinnekamp. (9) The parameters were controlled in such a
way that the experiment produces, to a good approximation, an equipo-
tential channel system growing in a plane with a radial electrode from a
central point. The experiment shows that the dielectric breakdown pattern
has a fractal structure. The stochastic model containing the essential fea-
tures of the fractal properties of the dielectric breakdown was introduced
by Niemeyer, Pietroniero, and Wiesmann (NPW), (1, 10) and generalized by
Wiesmann and Zeller. (11)

In the recent experiment (3) a transverse high magnetic field was applied
during the discharge evolution and thus any spatial restriction of the
surface discharge was avoided in order to use a locally sensitive probe. The
experiment shows the spatial evolution of a negative surface discharge in a
nitrogen atmosphere as a function of the magnetic field (Fig. 1). At B=0 a
very bright starlike pattern develops (Fig. 1a). At moderate magnetic field
(up to 7T), the leader channels are bent and appear to have a circular
shape outside the central electrode region (Fig. 1b).

The radius of curvature is of the order of 1 cm at 7T. The direction of
the bending corresponds to the movement of electrons in crossed electric
and magnetic fields. With the increase of the magnetic field the radius of
curvature decreases, the channels approach each other and branching sets
in. At the highest applied magnetic field of 12T (Fig. 1c), the circular-
shaped current filaments are only found in the outmost regions of the
discharge pattern where they can develop undisturbed by the fields of
neighboring leader channels.

In this letter we modify the DBM model introduced by Wiesmann and
Zeller (11) and the active walker model (12, 13) for the case of external magnetic
field.

Fig. 1. Surface discharge patterns in N2 at atmospheric pressure for different external mag-
netic fields (Fig. 2 from ref. 3): (a) B=0T; (b) B=5T; (c) B=12T.
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Fig. 2. Bonds connecting a lattice point with one of eight adjacent lattice points in a two-
dimensional square lattice. The geometry of the experiment is represented by a central elec-
trode at some point while the other electrode is a circle at large distance. The discharge starts
at the central electrode and grows by one lattice bond per growth step.

Let us consider a two-dimensional square lattice in which a central
point represents one of the electrodes while the other electrode is modeled
as a circle at large distance (Fig. 2), according to the geometry of the
experiment. (3) The discharge starts at the central electrode and grows by
one lattice bond per growth step. A bond connects a lattice point with one
of eight adjacent lattice points as it is described in Fig. 2. Once a given
point is connected to the discharge structure by a bond, it becomes part of
the structure. The potential of the central electrode is 0, the potential of a
point in the structure is Vi, k=Vl, m+VR f l, where Vl, m is the potential of a
points from which growth go on, VR is an internal field in the structure and
l is 1 for bonds parallel to the grid and is`2 for diagonal bonds.

The growth is computed as follows: first the Laplace equation is
solved with the boundary conditions determined by the electrodes and the
discharge structure. Then the local field Floc between a point which is
already a part of the structure (i, k) and a new adjacent point (i −, k −) is
Floc(i, k, i −, k −)=

jiŒ, kŒ−Vi, k
l , where jiŒ, kŒ is the solution of Laplace equation.

The breakdown can occur only if the local field is greater than the critical
field of growth FC. The probability that a new bond will form between a
point which is already a part of the structure and a new adjacent point
p(i, kQ i −, k −) is calculated as a function of the local field Floc between the
two points:

p(i, kQ i −, k −)=
Fgloc

; Fgloc
(1)
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where a power-low dependence with exponent g is assumed to describe
adequately the relation between the local field and the probability. The sum
in the denominator refers to all possible growth processes. A new bond is
chosen randomly with probability distribution (1) and added to the
discharge pattern. With this new discharge pattern one starts again. More
detailed description of this model is done in ref. 11.

Application of an external magnetic field changes the probability dis-
tribution (1). A moving charge in the magnetic field experiences the
Lorentz force FL

`

=eVF ×HF , which is perpendicular to VF , the charge veloc-
ity. Here e is the electron charge and HF is the magnetic field. Consider each
step of growth like a superposition of two processes. The first step is
choosing a new bond using the probability distribution (1), and the second
step is taking into account the probability, pH, of deviation of the growth
due to the magnetic field.

Suppose, for example, that after first step of growth the bond from the
dot 0 to the dot 4 was chosen (Fig. 2). In the next step, then, the growth
will proceed from the dot 0 to the dot 3 with the probability pH or to the
dot 4 with the probability 1−pH. The new probability of growth can be
written as

p̃(i, kQ i −, k −)

=
p(i, kQ i −, k −)(1−pH(i, k, i −, k −))+p(i, kQ i', k') pH(i, k, i', k')

; (p(i, kQ i −, k −)(1−pH(i, k, i −, k −))+p(i, kQ i', k') pH(i, k, i', k'))
(2)

where the point (i', k') is the neighboring point with respect to the point
(i −, k −) in the clockwise direction with respect to the point (i, k) and the
sum in the denominator refers to all possible growth processes. The prob-
ability (2) was used in computer simulations in place of the probability (1)
with the same algorithm.

Let us turn to the probability pH of deviation of the growth due to the
magnetic field. In our model, during the process of growth, two constant
forces act on charge carriers, FL and eFloc (Fig. 2). When the resulting force
is near the dot 3, pH 0 1; when the resulting force is near the dot 4,
pH 0 0. It is clear that the probability pH is proportional to FL

eFloc
. If

eFloc(i, k, i −, k −) < FC then the growth does not occur and pH should be
zero. If FL

eFloc
> 1 then we let pH=1. The force FL is proportional to the

velocity of charge carrier. In our model we can take into account only a
local velocity, which arrises in the first step of growth process due to the
acceleration of the charges in the local field Floc on a some characteristic
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length dl. The velocity of charge carriers can be estimated from the energy
conservation law. So, the value of the effective Lorentz force is:

FL(i, k, i −, k −)=e= 2e
m
dlFloc(i, k, i −, k −) H (3)

where m is an effective mass. Based on these considerations, we choose the
probability of deviation of the growth due to the magnetic field, pH, in the
following form:

pH(i, k, i −, k −)=˛
0, Floc(i, k, i −, k −) < FC

FL(i, k, i −, k −)
Floc(i, k, i −, k −)

,
FL(i, k, i −, k −)
Floc(i, k, i −, k −)

[ 1, Floc(i, k, i −, k −) \ FC

1,
FL(i, k, i −, k −)
Floc(i, k, i −, k −)

> 1, Floc(i, k, i −, k −) \ FC (4)

where FL(i, k, i −, k −)=`lFloc(i, k, i −, k −) H and H is the value of the mag-
netic field.

In our computer simulations we consider a 500×500 lattice. The solu-
tions of the Laplace equation were obtained by the iteration method. (10)

Before starting of each realization of growth we performed 20000 iterations
and after each step of growth the number of iterations was 40. This proce-
dure gives a good convergence. The number of particles in breakdown
structure was 9000.

The fractal dimension was calculated by the method described in
ref. 10, where for every realization the logN(R) versus log R is plotted.
Here N(R) is the number of particles belonging to the structure and being
within a circle of radius R. The fractal dimension is obtained by fitting a
straight line to the data scaling region. For every set of the same param-
eters of the model (H, FC, VR, g) we made about 100 realizations. Thus the
statistical fluctuations were reduced.

We start our simulations with the case of the zero magnetic field and
the zero values of the parameters Fc and VR in order to compare our results
with the results of the different authors. Our results for this set of param-
eters are in a good agreement with the results, obtained in refs. 10 and 11.

The example of the computer-generated discharge pattern (Lichten-
berg figure (2)) corresponding to the following set of parameters: H=0,
g=1, Fc=0 and VR=0 is shown in Fig. 3a. In Fig. 3b we show the com-
puter-generated discharge pattern in the presence of the external magnetic
field. The white lines in Figs. 3a and 3b correspond to the leader channels.
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Fig. 3. (a) Computer-generated discharge pattern (Lichtenberg figure) corresponding to the
following set of parameters: H=0, g=1, Fc=0 and VR=0 as explained in the text. The
white lines correspond to the leader channels; (b) computer-generated discharge pattern in the
presence of the external magnetic field. The leader channels in the magnetic field are distorted
and appear to have a circular shape outside the central electrode region, due to the action of
the magnetic field; (c) the saturation of the fractal dimensionality, with growing magnetic
fields, at the value of D=1.67.

Unlike the pattern, presented in Fig. 3a, the leader channels in the magne-
tic field are distorted and appear to have a circular shape outside the
central electrode region. The direction of the bending corresponds to the
movement of electrons in crossed electric and magnetic field. The radius of
curvature of the leader channel is about two orders of magnitude greater
then the Larmor radius of an electron.
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The saturation of the fractal dimensionality, with growing magnetic
fields, at the value of D=1.67, is presented in Fig. 3c. The plot starts from
the value of D=1.65, in the absence of magnetic field, which is smaller
than the fractal dimensionality reported in ref. 10. Such difference results
from the fact that in ref. 10 the critical field value for the breakdown was
not taken into account. We have improved their calculations by introduc-
ing the minimal value of the electric field for the breakdown between two
successive points. In this case the breakdown pattern is more directionally
selected, and a lower fractal dimensionality results. With the increase of the
external magnetic field, the fractal dimension growth and finally saturates
at an universal for high magnetic fields values of 1.67±0.01. We introduce
here a preliminary notion of Magnetic Fractal Dimensionality (MFD). The
growth of MFD with the magnetic field could be expected, since the curved
trajectories fill up the space more densely than the straight ones. The exis-
tence of an universal limit, however, is far from being obvious. Following
the directed percolation models, one could think that the saturation of
MFD will occur at D=2. Figure 3c shows clearly that in this system the
MFD saturates due to the physics of current carrying streamers.

An unexplained feature of the experiments (3) is the ‘‘spider-legs’’ form
of the breakdown pattern in the absence of the external magnetic field. We
outline here that the streamer currents are rather strong, 10÷100A, and
their influence on the streamer pattern can be very important. To describe
this phenomenon we have taken into account the magnetic interaction
between current carrying streamers, in the framework of the modified
active walker model which is described in what follows. The results of our
calculations, presented in Fig. 4, show that our model correctly describes
the experimentally observed ‘‘spider-legs’’ effect.

Active walker models have been used to describe different pattern
formation problems. (12, 13) In these models the walkers movement is subject
to the influences of the environment and vice versa. We describe the leader
channel propagation in the magnetic field using the active walker model.
The Lorentz force acting on the fast-moving electrons is particularly effec-
tive in the high-field regions in the leader tips, where the channel formation
takes place.

Let us consider again a two-dimensional square lattice in which a
central point represents one of the electrodes while the other electrode is
modeled as a circle at large distance. The discharge starts at the central
electrode, so initially several walkers are set in the vicinity of it. The
walkers move in a potential which is the solution of the Laplace equation
with the boundary conditions determined by electrodes and discharge
structure. During a step of growth each walker moves. The solution of
Laplace equation is found by iteration method (10) after each step of growth.
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When a walker moves to a point, this point starts belonging to the
breakdown structure. The potential of the central electrode is 0, the poten-
tial of the points in the structure is Vi, k=Vl, m+VR f l, where Vl, m is the
potential of a points from which growth go on, VR is an internal field in the
structure and l is 1 for bonds parallel to the grid and is `2 for diagonal
bonds. In the absence of the magnetic field, the probability of a walker step
is a function of the local field Floc. (12) The breakdown occurs only if the
local field is greater then the critical field of growth FC.

Fig. 4. The ‘‘spider-legs’’ form of the breakdown pattern following from the magnetic
interaction between the streamer currents: (a) current-current interactions are not taken into
account, H=0; (b) current-current interactions are included into calculations, H=0; (c)
current-current interactions are included into calculations, H ] 0. The color lines are equipo-
tential surfaces.
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The magnetic field is taken into account by the following way. We add
to the local field in the direction perpendicular to the previous move of the
walker the Lorentz force which is proportional to the magnetic field. The
magnetic field acting on the i walker is Hi=H0+H

i
I, where H0 is external

magnetic field and H i
I is the field created by currents of the breakdown

structure. We calculate H i
I by means of the Biot–Savart law.

The main results of this part of studies are presented in Fig. 4.
To summarize, the main results of this paper are as follows.

(1) Our model based on generalized DBM describes well the growing
of the discharge pattern complexity in the magnetic field. As in experi-
ments, the radius of the curvature decreases with increasing of the magnetic
field. This radius is much larger than the electron cyclotron orbit and
results from the drift movement of the Larmor centers of the qyrating
electrons. (3)

(2) We have introduced a preliminary concept of the Magnetic
Fractal Dimensionality and have obtained its saturation with growing
magnetic fields. The Universal Magnetic Fractal Dimensionality equals
1.670 which is superior to 1.65, obtained in the absence of a magnetic field.

(3) The results obtained with the use of modified active walker model
are in a good agreement with experiment. The magnetic interaction
between the current-carrying streamers results in the ‘‘spider-legs’’ like
streamer patterns at lower fields, which corresponds to the experimental
observations.
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